Lesson Plan Abstract

LESSON TITLE: The Communication Challenge
LESSON TOPIC: Communicating Design: graphically, written and verbally

PURPOSE OF LESSON:
In this lesson plan, you will be teaching 3 key aspects of communicating design. The first goal in any design related field is to communicate your thoughts, ideas and values to your audience. By researching a famous place designed by a Landscape Architect or Landscape Architecture firm, the students will use the provided methods to describe the project, firm, and create their own concept statement. This lesson will also provide a handwriting challenge for the students to hand letter their statement using the provided hand lettering tracing template. The activity will end with the students presenting their project through a brief presentation. The total time for this activity is estimated at 4 hours.

KEYWORDS: Design, Completed Projects, Written Communication, Verbal Communication, Graphic Communication, Reading

TARGET GRADES: 6th - 8th grades

DURATION: 4 hours (Times for assignments are suggested, assignments can be assigned as homework or as a class assignment activity)

STUDENT RATIO: 1 Teacher and/or Design Professional per class

MATERIALS & EQUIPMENT:
+ Hand Lettering Tracing Template (PDF file and on slide #2)
+ Tracing Paper
+ Internet access for researching of notable landscape project
+ Pencil or Pen
+ Paper for desk name cards (8.5 x 11 card stock suggested to make 2 desk name cards)

PREPARATION:
+ Read through the lesson plan
+ Order or print “Your Land” (at least 2 weeks prior to lesson date, free but S&H needed. [landscapearchitecturemagazine.org/your-land/]
+ Have access to a projector
+ Purchase and prepare printed materials and desk name cards
Lesson Plan Outline

LESSON PLAN OUTLINE:
Introduction + What is Landscape Architecture? (1 Hour)
+ Ask the students if they have ever heard of landscape architecture before and if they know what a landscape architect does?
+ Introduce yourself and explain what your role is as a landscape architect.
+ Ask the students if they have any questions about the profession or role of a landscape architect.
+ Ask the students to introduce themselves and share their favorite outdoor space and why.
+ Hand out “Your Land” publication to each student.
+ Have the students use the printed “Your Land” publication as a guide as you share the coordinating informational presentation slides. Have the students take turns reading highlights from “Your Land”.
+ When the presentation has ended, have students select one of the famous places from the list.

The Communication Challenge: Assignment 1 - Research (1 Hour)
+ Have the students research their notable landscape place and take notes using the suggested list of questions provided in the assignment instructions.
+ Students can use computers or the library.

The Communication Challenge - Assignment 2 - Graphically/Written (Suggested, 45 minutes)
+ Ask the students to describe three (3) components of the place that appeal to the student and three (3) key facts about the landscape architect or landscape architectural firm that designed the place through hand sketching or printed images along with a short written description. The students can put the images and sketches into a collage for presenting during the verbal portion of the assignment. Ask the students to write using the hand lettering tracing template as an example of the lettering style.

The Communication Challenge - Assignment 3 - Written (1 hour)
+ Ask the students to develop a personal concept statement that they feel best describes the design intent for the place they have selected. The student should prepare a written statement for each place describing the place. The description may include but is not limited to the following:
 • Where is the place located?
 • How does the place make you feel?
 • What do you like about the place?
 • All of the statements should be hand lettered using the hand lettering tracing template as an example of the lettering style.
+ Have the students write using the hand lettering tracing template as an example of the lettering style.

The Communication Challenge - Assignment 4 - Verbally (2-5 minutes)
+ Using all of the above, the students should be prepared to provide a brief presentation for their project. This can be as simple as reading your project description or be more informal in description.
Lesson Plan

Times for assignments are suggested, assignments can be assigned as homework or as a class assignment activity.

Introduction + What is Landscape Architecture? (1 Hour)

Using the lecture talking points, begin the informational slideshow. On the last slide, ask the students to select one of the famous landscape places on the list for assignment one.

Slide 1 + 2: (Fill in slide with your information) Welcome the students to Communication in Design. Have presentation up on the screen/projected with Slide 1 showing. Ask the students by a show of hands if they have ever heard of landscape architecture before? Those who raise their hands, ask if they can describe the profession and what they think a landscape architect does? Then, introduce yourself, explain what your role is as a landscape architect and what inspired you to become one. Ask the students to introduce themselves and say where their favorite outdoor space is and why. After introductions, click to slide 2 and hand out the hand lettering tracing templates and desk cards. Ask the students to practice using the trace paper and then hand letter their name on the place card. Ask the students to keep these on their desks for the duration of the lectures classes (10 minute in class activity. Students can also be assigned this activity as homework prior to presentation day).

Slide 3 + 4: Ask the students, “Could you become a landscape Architect?” while handing out the “Your Land” publication. Hand out printed copies of “Your Land”. Have students follow along with their printed copy of “Your Land” in unison with the slide presentation.

Slide 5: Who Makes All This? — Highlight project images and explain to students that this is all made by landscape architects.

Slide 6: What is landscape? Have one of the students read the text box.

Slide 7: What is Landscape Architecture? Have one of the students read the text box.

Slide 8: Building Blocks in Landscape Architecture. Have 5 students take turns reading the text boxes.

Slide 9: What do landscape architects do? Have 6 students take turns reading the text boxes.

Slide 10: What are the goals of Landscape Architecture? Have 7 students take turns reading the text boxes.

For slides 11 - 17, When possible, reference local projects of similar scope for connection and interaction with students.
Slide 11: City Park. Read the 1st description to the students and introduce the designer. Then, have 5 students take turns reading the text boxes.

Slide 12: Play. Read the 1st description to the students and introduce the designer. Then, have 6 students take turns reading the text boxes.

Slide 13: Zoo. Ask students to raise their hands if they have ever been to a zoo. Read the 1st description to the students and introduce the designer. Then, have 5 students take turns reading the text boxes.

Slide 14: Urban River. Read the 1st description to the students and introduce the designer. Then, have 5 students take turns reading the text boxes.

Slide 15: Vegetable Gardens. Read the 1st description to the students and introduce the designer. Then, have 5 students take turns reading the text boxes. Ask students if they have a vegetable garden at home.

Slide 16: Wet Land. Read the 1st description to the students and introduce the designer. Then, have 5 students take turns reading the text boxes.

Slide 17: Green Roof. Read the 1st description to the students and introduce the designer. Then, have 5 students take turns reading the text boxes.

Slide 18: Your Turn: Become a Landscape Architect. Recap with the students what they have learned about Landscape Architecture. Tell the students what they can do as the next steps to become a Landscape Architect.

Slide 19: End the “Your Land” portion of the presentation.

Slide 20/21: Ask the students if they have any questions about Landscape Architecture. Then, introduce the assignments of The Communication Challenge. Ask students to pick one of the Landscape Landmarks listed in the presentation. Ask the students to share what they have learned with family and friends from today’s presentation.

Times for assignments are suggested, assignments can be assigned as homework or as a class assignment activity. If assigned as class assignment, teacher/design process walk around and engage with the students for assistance.

The Communication Challenge - Assignment 1 Research (1 Hour)
+ After the students have selected their notable landscape place, allow 1 hour for the students to spend time researching their selected place through the use of a computer or at the library. During this research period, ask the students to take notes using the suggested list of research questions provided in the assignment instructions.
 • Suggested research topics and questions
 • Where is the project located?
 • How does the weather affect the location?
 • Who was the Landscape Architecture firm? If a historical project, who was the original (or now current) design firm(s).
• Where is their firm located?
• What are 3 interesting facts about the Landscape Architecture firm (if applicable)
• How do the images of the notable landscape place make you feel?
• What do you like about the notable landscape place?
• What makes this a good design?
• What do you think could improve?

The Communication Challenge - Assignment 2 - Graphically/Written (45 minutes)
+ For the 2nd assignment, ask the students to describe three (3) components of the place that appeal to the student and three (3) key facts about the landscape architect or landscape architectural firm that designed the place through hand sketching or printed images along with a short written description. The students can put the images and sketches into a collage for presenting during the verbal portion of the assignment. Ask the students to write using the hand lettering tracing template as an example of the lettering style.

The Communication Challenge - Assignment 3 - Written (1 Hour)
+ Ask the students to develop a personal concept statement that they feel best describes the design intent for the place you have selected. The student should prepare a written statement for each place describing the place. In addition to the items described above, the description may include but is not limited to the following:
 • Where is the place located?
 • How does the place make you feel?
 • What do you like about the place?
+ All of the statements should be hand lettered using the letter guide as an example of the lettering style.

The Communication Challenge - Assignment 4 - Verbally (2-5 minutes)
+ Using all of the above, the students should be prepared to provide a brief presentation for their project. This can be as simple as reading your project description or be more informal in description. The students should also include their collage from Assignment 2 for viewing.

CREATED BY: Rebecca Bradley, PLA, ASLA and Ashley Turner
COMPANY/UNIVERSITY: Cadence
LOCATION: Fort Lauderdale
Disclaimer
All submissions shall become the property of Future Landscape Architects of America (FLAA). FLAA reserves the right to exhibit and reproduce any of the submissions. FLAA reserves the right to format submitted lesson plans to be more easily used in any web applications or publications. By submitting a lesson plan, the entrant agrees to allow FLAA full use of the submission and confirms that the submitted lesson plan is of their own work and creation. In any public use of the submissions, credit will be given to the individual or the design team. All submissions are final.
CONTENTS

WHO MAKES ALL THIS?
2

WHAT IS LANDSCAPE?
4

WHAT IS LANDSCAPE ARCHITECTURE?
6

BUILDING BLOCKS
8

WHAT DO LANDSCAPE ARCHITECTS DO?
10

WHAT ARE THE GOALS OF LANDSCAPE ARCHITECTURE?
12

MAKE IT:
CITY PARK
14

MAKE IT:
PLAY-ZA
16

MAKE IT:
VEGETABLE GARDENS
22

MAKE IT:
WETLAND
24

MAKE IT:
SKATEPARK
26

MAKE IT:
GREEN ROOF
28

YOUR TURN:
BECOME A LANDSCAPE ARCHITECT
30

GLOSSARY
32

MAKE IT:
ZOO
18

MAKE IT:
URBAN RIVER
20

MAKE IT:
A BETTER WORLD
33
WHO MAKES ALL THIS?

Grand Teton National Park
Craig Thomas Discovery
and Visitor Center, Moose, WY
Swift Company LLC

Ecological Restoration Journal
Rutgers University

PHYTO: Principles and Resources for
Site Remediation and Landscape Design
By Kate Kennen and Niall Kirkwood
Routledge

The Metro-Forest Project, Bangkok, Thailand
Landscape Architects of Bangkok

2 / LANDSCAPE ARCHITECTURE MAGAZINE
LANDSCAPE ARCHITECTS DO.
WHAT IS LAND
Landscape is everything around you—the ground, plants, animals, buildings, hills, valleys, rivers, roads, parking lots, power lines, fences, beaches, fields. **Everything.**

It can be a garden, a coastline, a forest, or the side of the road. It’s all landscape.
WHAT IS LANDSCAPE ARCHITECTURE?
Landscape architecture is the work of making specific kinds of places outdoors. It could be designing a town square or a playground—even a whole city. It could be designing a pond to make it better for frogs, turtles, fish, and birds. Some kinds of landscape architecture are easy to see, like a park. Other kinds may look completely wild, like a meadow or a mountainside. Landscape architecture is dedicated to the design of healthy environments and communities, and to protecting the health, safety, and welfare of people.
Landscapes are made of many different materials. They include natural materials such as soil, plants, and water, as well as stone, wood, and mulch. They may also include human-made materials like concrete, steel, glass, and even fabrics. Some materials are used to build landscapes and give them shape and support. Others, like paving or lighting, help make landscapes easier or safer for people to use.
Plants keep us alive as food and fuel. They turn sunlight and carbon dioxide in the air into energy, and pump oxygen into the atmosphere for us to breathe. All kinds of plants, from mosses and grasses to shrubs and trees, are important for landscape architects. Plants feed and shelter animals. They determine how a landscape works—by making it shady or helping it soak up water, for example—as well as how it looks and feels to us.

Water covers 70 percent of the Earth’s surface, so it is an important part of most landscapes, whether in the form of oceans, lakes, rivers, or creeks. There is also a lot of water, known as groundwater, stored deep in the Earth where we can’t see it. Water helps nourish the land and is required for nearly all forms of life.

Animals, from the smallest worm to the biggest elephant, depend on landscapes for life. The places where animals (and plants) live are called habitats. When landscape architects design landscapes, they consider how their changes will affect the insects, fish, birds, and mammals that live in a particular habitat.

Soil sustains life on land. It may be sandy like a beach or hard like clay. It contains minerals, water, and gases, and organic matter that feeds plants through their roots. Soil also holds billions of tiny organisms, like bacteria and fungi, that build a complex web of life under the surface. Worms and bugs crawl around in the soil, eating and moving nutrients around.
Research is important to landscape architects. In designing a landscape, they use information they know about a piece of land to try to find out what they don’t know. This work may involve scientific study of water or air quality, or choosing the right plants for a site. It may mean researching a community’s population data and interviewing its residents. Economic research can help find out how a design might affect individuals or businesses near a site. Research can tell landscape architects what has happened on the site in the past and predict what may happen in the future.
Landscape architects work with a variety of other experts: horticulturists, ecologists, biologists, architects, engineers, city planners, construction managers, geologists, agronomists (soil scientists), hydrologists (water scientists), archaeologists, foresters, and marine scientists. They also work with people who live in the communities where they are designing landscapes, as well as their elected representatives, to build agreement about what a landscape should become.

For landscape architects, design is the job of creating a landscape to look and work a certain way. Design is much like art, but it also involves science and technology to make sure that all the parts—soils, plants, construction materials, and even the sun, rain, and wind—work well together to last for years. Landscape architecture involves a lot of STEM knowledge, as it needs a mix of science, math, engineering, and technology to achieve its goals.

Landscape architects often build models of the landscape designs they work on. Sometimes these models are physical—they provide a miniature view of how a design will look when the design is completed. Often, the models are made by using a computer program. Computer models can help landscape architects figure out how the sun will shine on a site, what happens if the site were to flood, or where trees should be planted to provide shade. Making models helps answer a lot of questions before construction of a landscape even begins.

Designing landscapes always involves discovering new things. As a landscape architect, you learn about all the different plants and animals on your site—even rare ones, or those you can see only with a microscope. You discover how water moves across and underneath the site, and whether it is clean or polluted. You discover the history of the site—who has lived there, how the land was used, and how it has changed. You'll study weather patterns and how they shape the land. You may study the site's rock formations or fossils. These discoveries will build your knowledge about how land, nature, and people all interact to shape landscapes over time.
WHAT ARE THE GOALS OF LANDSCAPE ARCHITECTURE?
Humans have placed enormous pressure on the world’s plants and animals. Many species have gone extinct, and more are in danger of disappearing. At the same time, people over the years have moved many plants and animals around the world, and sometimes these newcomers take over, or become invasive. Landscape architects work to welcome friendly species to landscapes. Examples include pollinator gardens to support native insects, birds, and other animals, and land bridges over highways to let creatures that need lots of room, such as bears, elk, or moose, cross safely.

BIODIVERSITY

Parks, gardens, plazas, whole cities, and wilderness are among the places landscape architects design with people in mind, to bring them together or give them places to spend time alone. Landscape architects make public spaces for people to enjoy the outdoors, to play, to walk or bicycle, or to hike and experience nature. The goal is to make these places in ways that help improve the environment and promote the health of people over time.

CLEAN WATER

When it rains in cities and suburbs, rainwater may carry pollution from roads to sewers, and it often flows right into our creeks and rivers. Pavement often prevents water from soaking into the ground where it can replenish natural groundwater supplies. Landscape architects work on ways to prevent these problems by providing rain gardens and bioswales where water can soak back underground and filter out pollution by using soil and plants. Designs also may use tanks called cisterns to catch and store rainfall under streets, so it can be pumped back out to water plants.

ADDRESSING CLIMATE CHANGE

The ways we use landscapes have a big effect on global climate change. Many types of development may contribute to climate change and worsen the impact of the extreme storms or droughts it causes. Roads and parking lots, and communities that spread across a lot of land, are all related to our warming climate and contribute to flooding, erosion, and wasting water. They may generate pollution (especially carbon dioxide) and urban heat. Carefully designed landscapes can help counter climate change by adding trees that provide shade, cool the air, and stabilize crumbling riverbanks. They also help conserve natural resources by encouraging people to walk or bicycle rather than drive cars.

BETTER NEIGHBORHOODS

Landscape architects can help make sure that parks, playgrounds, schools, and stores are a pleasant walk from home, that there are plenty of trees, that water is not wasted, and that wildlife is safe.

MAKING PLACES FOR PEOPLE

Betta streets

Big, blank, or dirty streets can make a person feel isolated and unsafe. Busier streets with trees, sidewalks, restaurants, stores, and lots of people can make us feel more connected and protected. Landscape architects design streets to accommodate all kinds of people—those on foot, on bikes, in wheelchairs, waiting for the bus, and even in cars. Designers of streets usually include healthy trees for shade and beauty, lighting, and even hidden systems that can handle thousands of gallons of rainwater without sending it to the sewers.

HEALTH AND SAFETY

Healthy landscapes promote the health of people. They provide places to walk, to sit, to play, to exercise, to explore, and to look at the stars. Landscape architects design these places to be safe and accessible to all people. They also help communities prepare for disasters with designs that reduce flooding during storms.
Parks are a kind of place landscape architects design frequently. This is Washington Canal Park in Washington, DC. Until just a few years ago, this park was a dirty, scrubby parking lot for parking school buses. Now it’s a place where you can ice skate in the winter and splash in water jets in the summer. All through the year, people come to Canal Park to sit on benches, lie on the lawn, and watch people.

FROM SKATING TO SPLASHING

During the winter, Canal Park has an ice skating rink. In the summer, you can’t even tell! When the weather gets warm, part of the rink turns into a big splash pad with water jets to cool you off.

WATER COLLECTION

Canal Park collects rainwater from the pavement and the roofs of its buildings and stores it in underground tanks. The water is filtered through rain gardens filled with plants, cleaned and stored underground, and then pumped back up to supply the fountains, pools, and the splash pad.
Canal Park was designed by the landscape architect David Rubin and the firm OLIN.

NATIVE PLANTS

The plants in Canal Park are mostly native to the Washington, DC, area, and help feed insects, birds, and other animals in the city.

ENERGY SAVING

The park includes 28 geothermal wells that control the temperature within the park’s indoor spaces. There are charging stations for electric cars. The pavement is designed not to increase urban heat during the day. And because it uses its own water, it saves energy needed to pump water from public supplies.

FESTIVALS, MOVIES, AND CONCERTS

Throughout the year, Canal Park holds various celebrations. And at night when the weather is warm, people flock to watch movies or attend concerts.
Cities need plenty of places outdoors for people to gather and relax in the fresh air. A landscape architect made this public space, the Blake Hobbs Play-Za, in New York City. It’s a plaza where you can play. It’s in East Harlem, surrounded by streets with a lot of schools and housing. It used to be about a half acre of asphalt, and it didn’t get a lot of visitors. The landscape architect brought in colorful pavement, equipment to play on, and water to play in.

People in the neighborhood took part in the process of deciding what the old park would turn into. The outer edges of the park have been redesigned to welcome in neighbors from three sides.

A big wooden platform stretches out beneath the trees, giving people a stage to hold a band or just a place to relax and listen to the trees overhead in the wind.

Several sycamore trees tower over the site, bringing shade and color to the Play-Za. Sycamores are tough, and can thrive in almost any city setting.
These tough wood structures are great to climb on, jump around, and test your physical skill.

Plants along the outer edges of the park help rain soak into the ground.

The pavement has become bright blue and yellow in bold shapes, which looks exciting in sunlight.

The Blake Hobbs Play-ZA was designed by the landscape architect Kate Orff and her firm, SCAPE Landscape Architecture, in New York City.
Zoos are fun. They are also the best hope many animal species have of survival, as zoologists work hard to protect their populations and study how endangered species might be helped. This is the **Gorilla Rainforest at the Dublin Zoo in Ireland**, where western lowland gorillas native to Africa can romp, climb, or just hang out on more than an acre of wild-looking land.

ALMOST LIKE HOME

The Gorilla Rainforest reflects the landscape of the Lake Tele Community Reserve in the Republic of the Congo in central Africa. It has areas of grassland, forest, and marshy river habitat. All of these areas were specifically designed by landscape architects who worked with the zoo managers to make the habitat right, based on years of observation of what gorillas in the wild prefer.

ROOM TO MOVE

The gorillas in Dublin practically have their own island. A big moat keeps the gorillas safe in their area but lets them move about freely with plenty of space and room, and wide views of their surroundings. A holding area allows the zookeepers to give the gorillas the care they need up close.

FAMILY MATTERS

The Dublin Zoo is home to seven gorillas. They include Lena, who is about 33 years old and has a baby born in 2016, Mayani, Kambiri, Kafi, Vana, and Tebogo. The zoo’s goal is to have a troop of 12 to 15 gorillas in all.
References to the cultures that coexist with wild animals are becoming common in many zoo habitats. The designer of this gorilla habitat also designed one for Asian elephants that relates elephants’ long relationship with people. This helps promote respect and familiarity with what we might only see as exotic creatures.

Landscape architects who design zoos are working to immerse the animals in environments much like the ones they would have in nature. Old zoos consisted mainly of bare cages. These new animal enclosures put the animals’ needs first. This gives visitors a better experience, too, because they can see how the animals interact with nature.

THE DUBLIN ZOO’S GORILLA RAINFOREST WAS DESIGNED BY THE LANDSCAPE ARCHITECT AND ARCHITECT MARIO CAMPOS OF JONES & JONES ARCHITECTS AND LANDSCAPE ARCHITECTS IN SEATTLE, WASHINGTON.
Rivers and creeks in many cities were buried in years past, channeled through drainage pipes to make way for development. Nowadays, landscape architects are helping some of these cities bring their streams back to the surface. This project, ChonGae Canal Park in Seoul, South Korea, is a beautiful example of a city that has reopened a stream along a seven-mile path through town.

ChonGae Canal Park, Seoul, South Korea
Mikyoung Kim Design
SCULPTURE AND SYMBOLS
Water splashes over the smooth-carved stones that surround the stream in what is called the Sunken Stone Garden. The stones were donated by the provinces of North Korea and South Korea, to symbolize unity. They have been shaped and arranged to allow people to step right down to the water and wet their feet. Upstream, a dramatic waterfall lights up at night.

UNIFYING THE CITY
Highways divide many cities, as the highway that once covered this stream did in Seoul. Streams, however, bring people together. People love to gather by the canal, particularly at the Sunken Stone Garden, just to listen to the water, splash, and watch people. Millions of people have visited the canal, and the park is able to host events such as festivals, concerts, and political rallies. The reopened stream also welcomes wildlife, including more than 200 species of birds, fish, and other creatures.

FLOODING ALLOWED
The ChonGae Canal’s landscape design is meant to handle seasonal flooding. Water levels can change by the hour or by the time of year, with the heaviest storms occurring during the monsoon season. Most days, as many as 22,000 gallons of water are pumped into the ChonGae River from storm drains and the subway system.

COOLER TEMPS
After the stream reopened, air temperatures in the crowded downtown area of Seoul fell by three to four degrees compared to temperatures on streets nearby. Breezes are now able to blow through the stream zone, which also helps clean the air.

NO MORE HIGHWAY
By the 1960s, the Cheonggyecheon Stream in Seoul was polluted, and a four-lane elevated highway was built to fly over it. But in the early 2000s, the city’s mayor, Lee Myung-bak, made it his mission to tear down the highway and restore the stream’s presence through town.

MEET THE DESIGNER
THE CHONGAE CANAL PARK WAS DESIGNED BY THE LANDSCAPE ARCHITECT MIKYOUNG KIM AND HER FIRM, MIKYOUNG KIM DESIGN IN BOSTON, MASSACHUSETTS.
Vegetable gardens are popping up in public places all over—not just in backyards anymore. Gardeners are using land that sits empty or squeezing plants into small, leftover open spaces. Landscape architects often help design community food gardens, especially in cities. A lot of schools and churches have started vegetable gardens. This one is at Miller Creek Middle School in San Rafael, California.
This garden was the idea of a sixth grader at the school. The student, named Gabby, wrote up the idea and shared it with her parents and her principal, and then was asked to present it to school district leaders. Gabby worked to raise money to start the garden. Community residents, local businesspeople, and even a Marin County supervisor volunteered to help build it.

The garden is totally organic, which means it doesn't involve the use of pesticides or harmful chemicals. Natural fertilizers, like compost, help the crops grow.

A lot of the food we eat comes from far away, hauled many miles by truck, train, or airplane, which means it contributes to pollution that contributes to climate change. Food gardens like Miller Creek supply people with food that is grown close to where it is eaten. This promotes cleaner air, cuts waste, and, most important, makes the food taste fresher!

The garden has 25 planter boxes in which people grow a feast of different kinds of vegetables and fruits. It also has an orchard of nine fruit trees (including lemon, plum, pear, two kinds of apple, and fig) and a planter for tasty herbs.
Wetlands are ecological areas that are mostly covered by water all or part of the time. They include swamps, marshes, and bogs. Because they are generally (but not always) waterlogged, they have developed their own complex webs of life over time. They host aquatic plant species and attract animals that thrive in or near water. Wetlands can be anywhere, in wild areas or in cities and suburbs. They can be vast or very small. This is the Sankofa Nature Trail and Wetland Park under construction on a 1.5-acre piece of land in New Orleans, Louisiana. The new design, when completed, will invite people in and help promote the health of this miniature ecosystem.
Besides welcoming people to enjoy nature up close, a major goal of the Sankofa wetland is to help manage excess water in times of heavy rain and potential flooding. New Orleans hopes to manage flooding across the city by relying on landscape designs like this that hold water and let it soak into the ground rather than run off and damage streets and homes.
Since the first skatepark was built in the 1960s in the United States, there have been hundreds more built, especially in the past decade. And who better to design a skatepark than a landscape architect—especially one like Mike McIntyre, who is a former sponsored skateboarder and BMX racer? The Lynch Family Skatepark in Cambridge, Massachusetts, across the Charles River from Boston, is one of the newest. It has 76,000 square feet of competition-level skating under a highway underpass. It’s also popular among BMXers and in-line skaters. And it’s all legal!

The spot where the skatepark sits was a brownfield—another word for polluted land. It sits between a railroad yard and a gravel plant. Working with engineers and others, McIntyre’s design team figured out how to remove contaminated soils and then seal in any remaining contamination before pouring concrete on top of it. This made the unappealing site attractive and safe for people.

Here is what the skatepark site looked like before construction began. It was an ugly, neglected, and polluted area.
The Lynch Family Skatepark is said to be the largest skatepark on the East Coast. If someone elsewhere makes a bigger one, that just means more skating!

BIG—REAL BIG

McIntyre and his team worked in meetings with the community—including more than 400 skaters—to find out what they would like in the skatepark. These kinds of meetings are called charrettes, and their goal is to find out what a large group of people wants in a public landscape and make it come true in a design. The skaters told McIntyre about their favorite places to skate in Boston, and he worked to include similar features at the Lynch skatepark. (There is an area for beginners, too.)

MEET THE DESIGNER

The Lynch Family Skatepark was designed by the landscape architect/skateboarder Mike McIntyre and his firm, Stantec.

THE LYNCH FAMILY SKATEPARK WAS DESIGNED BY THE LANDSCAPE ARCHITECT/SKATEBOARDER MIKE MCINTYRE AND HIS FIRM, STANTEC.
MAKE IT:

GREEN ROOF

American Society of Landscape Architects Headquarters, Washington, DC
Michael Van Valkenburgh Associates
Living roofs, or green roofs, are becoming increasingly common on top of buildings, especially in cities. They have many benefits. Standard roofs are hot and hard, and contribute to making cities hotter. This is the ASLA Green Roof, which sits on top of the headquarters of the American Society of Landscape Architects, the publisher of this magazine, in Washington, DC.

BIG OR SMALL

Green roofs can sit on top of any size building. The ASLA Green Roof sits three stories above the street in the Chinatown neighborhood of Washington.

HOLD THE RAINWATER

One important purpose of green roofs is to capture and hold rainwater. Otherwise, rainwater usually drains off roofs, runs into streets and sewers, and, during big storms, can overwhelm streams and cause pollution and erosion. When erosion occurs, trees may collapse and die, causing even more erosion. Green roofs can stop this cycle of damage. When it rains an inch, this roof and its plants can hold 75 percent of that water. The rest can be stored in an underground tank, or cistern, for later use.

COOLER TEMPERATURES

In the height of summer, when roofs are hot, the ASLA Green Roof keeps things cool—as much as 59 degrees cooler than ordinary black roofs nearby. The roof also acts as insulation in winter. Through the year, this roof reduces heating and cooling costs for the building it covers by as much as 15 percent.

SURPRISE MEADOW

Almost the entire roof is covered with plants. There are two kinds of plantings. The roof has tough, low-growing plants called Sedum that can grow in shallow soil. These plants are covered by steel grates that form the walking surface for the roof. It also has “intensive” plantings that thrive in deeper soils—including sumac trees. Two large mounds or “waves” were constructed to hold meadow plants and cacti that bloom and attract pollinating birds and bees.

CONSTANT MONITORING

A major benefit of the green roof is that it allows ASLA to monitor the amounts of rainfall it captures and holds. These results are taken from rain gauges and sensors that track the flow of water through the roof. Improvements to water quality can also be measured by testing the captured water to find out what substances it keeps from running into the sewers and the watershed, which flows to the Anacostia and Potomac Rivers and eventually to the Chesapeake Bay. So even a small roof helps environmental health.

MEET THE DESIGNER

THE ASLA GREEN ROOF WAS DESIGNED BY THE LANDSCAPE ARCHITECT MICHAEL VAN VALKENBURGH OF MICHAEL VAN VALKENBURGH ASSOCIATES IN BROOKLYN, NEW YORK.
If you love the outdoors, care about the environment, love working with people, and are creative, you could become a landscape architect.

The road to becoming a landscape architect starts here. Prepare by studying science, art, math, history, and business. Landscape architecture relies on a lot of the STEM skills you are already learning. And be sure to develop your communication skills: Good writing and public speaking are essential to landscape architects in their daily work. Read widely: Social studies, politics, and economics will help. But don’t forget to enjoy literature: novels, nonfiction, essays, and poems. It all contributes to a well-rounded set of design skills.
Almost every community has landscape architects working in it to improve the quality of life. Try to get to know one and pay her or him a visit. Ask what they are working on. You may be surprised at the variety of jobs they have in progress at any given time. You can also contact your nearest local chapter of the American Society of Landscape Architects to ask for more information about careers and design projects in your community.

Get to know the world around you by taking part in community events. Join a cleanup day at your local park or help clean trash from a stream. Visit nature centers, and join in on nature walks through your community—there is a lot of nature to discover wherever you go, even in the middle of a city.

To become a landscape architect, you will first enroll in a landscape architecture program at a college or university. There are many landscape architecture programs at colleges in the United States. Most states have a public university that offers a landscape architecture program. Once you graduate, you will need a license, issued by your state. To get a license, you will need to spend a few years working in a landscape architecture firm and then pass a tough examination to be sure you know what you need to protect the health, safety, and welfare of the public. Then you are on your way to a fulfilling career that holds different discoveries every day.
GLOSSARY

ALLÉE
Two parallel rows of trees planted to form a pathway.

BERM
A mounded bank serving as a separation between two elements in a landscape.

CHARRETTE
A group meeting to discuss a landscape design.

COPSE
A small grouping of trees.

EMINENCE
The top of a rise or hill.

EROSION
A loss of soil caused by wind or weather.

GRADE
The degree of slope in a landscape.

HA-HA
A long ditch used as a fence to preserve a view that would be marred by regular fencing.

INVASIVE
A plant or animal that is not native to the place where it lives that takes over and crowds out native species.

MEANDER
A winding curve in a river, path, or road.

NURSERY
A place where young plants and trees are grown and sold.

RIPRAPH
Loose stones used to form a foundation or prevent erosion in areas such as riverbanks.

SWALE
A shallow trench meant to direct the flow of rainwater.

TRELLIS
A vertical structure on which plants can be grown.

XERISCAPE
A landscape design using plants that require little water.
MAKE IT A BETTER WORLD
We wired this smart waste receptacle to know when it’s full. Imagine what we’ll have for you when you become a landscape architect.

We have something in common with you. What we create is limited only by our imaginations. So we imagined a better way for cities to plan, schedule and route waste collection, by creating sensors for our receptacles that can transmit all kinds of data to save money and time. Landscape architects are using Relay to plan spaces because they think smart receptacles is smart thinking. We’re looking forward to working on a cleaner, smarter environment with you, too.
Name of Presenter

name of presenter’s job title

presenter’s e-mail
Could YOU become a landscape architect?
Hand Lettering Template

ABCDEFGHIJKLMNOPQRSTUVWXYZ
nopqrstuvwxyz

abcdefghijklmnop
qrstuvwxyzu

abcdefghijklmnopqrstuvwxyz
WHAT IS LANDSCAPE?

Landscape is everything around you—the ground, plants, animals, buildings, hills, valleys, rivers, roads, parking lots, power lines, fences, beaches, fields. Everything. It can be a garden, a coastline, a forest, or the side of the road. It’s all landscape.
Landscape architecture is the work of making specific kinds of places outdoors. It could be designing a town square or a playground—even a whole city. It could be designing a pond to make it better for frogs, turtles, fish, and birds. Some kinds of landscape architecture are easy to see, like a park. Other kinds may look completely wild, like a meadow or a mountainside. Landscape architecture is dedicated to the design of healthy environments and communities, and to protecting the health, safety, and welfare of people.
Water

Water covers 70 percent of the Earth's surface. Soil is an important part of most landscapes, whether in the form of oceans, lakes, rivers, or creeks. There is also a lot of water, known as groundwater, stored deep in the Earth where we can't see it. Water helps sustain the land and is required for nearly all forms of life.

Plants

Plants keep us alive as food and fuel. They turn sunlight and carbon dioxide in the air into energy and pump oxygen into the atmosphere for us to breathe. All kinds of plants, from mosses and grasses to shrubs and trees, are important for landscape architects. Plants feed and shelter animals. They determine how a landscape works—by making it shady or helping it soak up water, for example—as well as how it looks and feels to us.

Animals

Animals, from the smallest worm to the biggest elephant, depend on landscapes for life. The places where animals (and plants) live are called habitats. When landscape architects design landscapes, they consider how their changes will affect the insects, fish, birds, and mammals that live in a particular habitat.

Soil

Soil sustains life on land. It may be sandy like a beach or hard like clay. It contains minerals, water, and gases and organic matter that feeds plants through their roots. Soil also holds billions of tiny organisms, like bacteria and fungi, that build a complex web of life under the surface. Worms and bugs crowd around in the soil, eating and moving nutrients around.

Materials

Landscapes are made of many different materials. They include natural materials such as soil, plants, and water as well as stone, wood, and metal. They may also include man-made materials like concrete, steel, glass, and even fabrics. Some materials are used to build landscapes and give them shape and support. Others, like paving or lighting, help make landscapes easier or safer for people to use.
WHAT DO LANDSCAPE ARCHITECTS DO?

Research
Research is important to landscape architects. In designing a landscape, they use information they know about a piece of land to try to find out what they don’t know. This work may involve scientific study of water or air quality, or choosing the right plants for a site. It may mean researching a community’s population data and interviewing its residents. Economic research can help find out how a design might affect individuals or businesses near a site. Research can tell landscape architects what has happened on the site in the past and predict what may happen in the future.

Collaborate
Landscape architects work with a variety of other experts: horticulturists, ecologists, biologists, architects, engineers, city planners, construction managers, geologists, agronomists (farm scientists), hydrologists (water scientists), archeologists, foresters, and marine scientists. They also work with people who live in the communities where they are designing landscapes, as well as their elected representatives, to build agreement about what a landscape should become.

Design
For landscape architects, design is the job of creating a landscape to look and work in a certain way. Design is much like art, but it also involves science and technology to make sure that all the parts—soils, plants, construction materials, and even the sun, rain, and wind—work well together to last for years. Landscape architecture involves a lot of STEM knowledge, as it needs a mix of science, math, engineering, and technology to achieve its goals.

Model
Landscape architects often build models of the landscape designs they work on. Sometimes these models are physical—they provide a miniature view of how a design will look when the design is completed. Often, the models are made using a computer program. Computer models can help landscape architects figure out how the sun will shine on a site, what happens if the site were to flood, or where trees should be planted to provide shade. Making models helps answer a lot of questions before construction of a landscape even begins.

Draw
Designing a landscape involves a lot of drawing to figure out how its parts will fit together on a site. It begins with simple sketches. Then the landscape architect begins to draw the site in detail, relying on measurements and other information about what is already on the site, which may be trees, streets, buildings, or utility lines. Most drawing eventually takes place on a computer, which helps the landscape architect precisely draw the kinds of plants that will be included, where pathways will go, and what kinds of construction materials will be used. These computer drawings are used by the builders, who put the pieces together to make the design become real.

Discover
Designing landscapes always involves discovering new things. As a landscape architect, you learn about all the different plants and animals on your site—even rare ones, or those you can see only with a microscope. You discover how water moves across and undercuts the site, and whether it is clean or polluted. You discover the history of the site—what has lived there, how the land was used, and how it has changed. You’ll study weather patterns and how they shape the land. You may study the site’s rock formations or fossils. These discoveries will build your knowledge about how land, nature, and people all interact to shape landscapes over time.
WHAT ARE THE GOALS OF LANDSCAPE ARCHITECTURE?

Biodiversity

Human population growth places increasing pressure on the world’s plants and animals. Many species have gone extinct, and more are in danger of disappearing. At the same time, people everywhere have created new plants and animals around the world, and sometimes these resources have become invasive. Landscape architects work to create habitats for threatened species in landscapes. Examples include pollinating gardens to support native insects, birds, and other animals and land bridges to help highway and rail traffic that need less of an impact on the environment.

Making Places for People

Parks, gardens, plazas, whole cities, and wildernesses are among the places landscape architects design for people to visit. By bringing them together in sites that provide places to spend time alone, landscape architects make public spaces for people to enjoy the outdoors, to play, to walk or bicycle, or to relax and experience nature. The goal is to make these places in ways that help improve the environment and promote the health of people over time.

Clean Water

When it rains in cities and suburbs, rainwater can carry pollution from roads into storm sewers and then flow right into creeks and rivers. pavement often prevents rainwater from soaking into the ground where it can replenish our natural groundwater supplies. Landscape architects work on ways to prevent these problems by providing rain gardens and bioswales where water can soak into groundwater and filter out pollutants before sitting still and plants. Designers also use tanks called cisterns to catch and store rainfall for use later, so it can be used back on the water plants.

Better Streets

Big cities need streets that can make a journey feel natural and safe. When streets are wide, they can feel intimidating and dangerous. Landscape architects design streets to accommodate all kinds of people—those on foot, on bikes, in wheelchairs, waiting for the bus, and even in cars. Designers of streets usually include breaks in the paving to create shade and beauty, and they include trees that can be trimmed to reduce levels of sunlight and shade in the street.

Health and Safety

Healthy landscapes can help the health of people. They provide places to walk, to sit, to play, to exercise, to explore, and to look at the stars. Landscape architects design these places to be safe and accessible to all people. They also help communities prepare for disasters with designs that reduce flooding during storms.

Better Neighborhoods

Landscape architects can help make sure that parks, playgrounds, schools, and even the streets can be a place for people to live, work, and play. By adding trees that provide shade and the air, and stabilizing erosion, they can also help improve natural resources by encouraging people to walk or bicycle rather than drive cars.
MAKE IT:

CITY PARK

Parks are a kind of place—landscape architecture, design, and poetry. The Canal Park in Washington, DC, is a story of a new park being transformed from a long-abandoned parking lot into a vibrant public space. Now, it's a place where you can skate in the winter and splash in water jets in the summer. All throughout the year, people come to Canal Park to sit on benches, lie on the lawn, and watch people.

FROM SKATING TO SPLASHING
During the winter, Canal Park has a magnetic skating rink. In the summer, you can't even tell. When the weather gets warm, part of the rink turns into a splash pad with water jets to cool you off.

WATER COLLECTION
Canal Park collects rainwater from the pavement and the roofs of its buildings and stores it in underground tanks. The water is filtered through rain gardens filled with plants, cleaned and stored underground, and then pumped back up to supply the fountains, pools, and the splash pad.

ENERGY SAVING
The park includes all geothermal wells that control the temperature within the park's indoor spaces. There are charging stations for electric cars. The pavement is designed not to increase urban heat during the day. And because it uses its own water, it saves energy needed to pump water from public supplies.

NATIVE PLANTS
The plants in Canal Park are mostly native to the Washington, DC, area, and help feed bees, butterflies, and other animals in the city.

FESTIVALS, MOVIES, AND CONCERTS
Throughout the year, Canal Park holds various celebrations. And at night when the weather is warm, people flock to watch movies or attend concerts.

MEET THE DESIGNER
Canal Park was designed by the landscape architect David Rubin and the firm Olin.
MAKE IT:

Cities need plenty of places outdoors for people to gather and relax in the fresh air. A landscape architect made this public space, the Blake Hobbs Play-Za, in New York City. It’s a plaza where you can play, it’s an East Harlem, surrounded by streets with a lot of schools and housing. It used to be about a half acre of asphalt, and it didn’t get a lot of visitors. The landscape architect brought in colorful pavement, equipment to play on, and water to play in.

MADE BY COMMUNITY

People in the neighborhood took part in the process of deciding what the old park would turn into. The outer edges of the park have been redesigned to welcome in neighbors from three sides.

PLAY ZONE

A big wooden platform stretches out beneath the trees, giving people a stage to hold a band or just a place to relax and listen to the trees overhead in the wind.

BIG BEAUTIFUL TREES

Several spruce trees tower over the site, bringing shade and color to the Play-Za. Spruces are tough, and can thrive in almost any city setting.

SOAK UP RAIN

Plants along the outer edges of the park help rain soak into the ground.

PATTERN

The pavement has become bright blue and yellow in bold shapes, which looks exciting in sunlight.

PLAY

These tough wood structures are great to climb on, jump around, and test your physical skill.

MEET THE DESIGNER

The Blake Hobbs Play-Za was designed by the landscape architect Kate Orff and her firm, Scape Landscape Architecture, in New York City.
Zoos are fun. They are also the best hope many animal species have of survival, as zoologists work hard to protect their populations and study how endangered species might be helped. This is the Gorilla Rainforest at the Dublin Zoo in Ireland, where western lowland gorillas, native to Africa can romp, climb, or just hang out on more than an acre of wild-looking land.

ALMOST LIKE HOME

The Gorilla Rainforest reflects the landscape of the Dzanga-Sangha Community Reserve in the Republic of the Congo in central Africa. It has areas of grassland, forest, and marshy rivers habitat. All of these areas were specifically designed by landscape architects who worked with the zoo managers to make the habitat right, based on years of observation of what gorillas in the wild prefer.

ROOM TO MOVE

The gorillas in Dublin practically have their own island. A big must keep the gorillas safe in their area but lets them move about freely with plenty of space and room, and wide views of their surroundings. A holding area allows the zookeepers to give the gorillas the care they need up close.

FAMILY MATTERS

The Dublin Zoo is home to seven gorillas. They include Berta, who is about 25 years old and has a baby born in 2016, Masai, Kumbiri, Kif, Vasa, and Tedigo. The zoo's goal is to have a troop of 12 to 15 gorillas in all.

CULTURE COUNTS

References to the cultures that coexist with wild animals are becoming common in many zoo habitats. The designers of this gorilla habitat also designed one for Asian elephants that relates elephants' long relationship with people. This helps promote respect and familiarity with what we might only see as exotic creatures.

ANIMALS ARE HOME, PEOPLE ARE VISITORS

Landscape architects who design zoos are working to immerse the animals in environments much like the ones they would have in nature. Old zoo consisted mainly of enclosures. These new animal enclosures put the animals’ needs first. This gives visitors a better experience, too, because they can see how the animals interact with nature.
Rivers and creeks in many cities were buried in years past, channeled through drainage pipes to make way for development. Nowadays, landscape architects are helping some of these cities bring their streams back to the surface. This project, Cheonggye Canal Park in Seoul, South Korea, is a beautiful example of a city that has reopened a stream along a seven-mile path through town.

Cheonggye Canal Park, Seoul, South Korea. Photograph by Eden Risenberg.

No More Urban Way

By the 1970s, the Cheonggye stream, known in Seoul as pollen, and a flood-irrigated elevated highway was built on top of it. But in the early 2000s, the city’s mayor, Lee Myung-bak, made it his mission to tear down the highway and reopen the stream’s precious water.”

Flooding Allowed

The Cheonggye Canal’s landscape design is meant to handle seasonal flooding. Water levels can change by the hour or by the time of year, with heavy rain storms occurring during the monsoon season. Most storms carry as much as 22,000 gallons of water, which are pumped into the Cheonggye River to rejoin the storm drain system and the subway system.

Unifying the City

Highways divide many cities, as the highway that once covered this stream did in Seoul. Streams, however, bring people together. People love to gather by the canal, particularly at the Sunken Stone Gardens, just to listen to the water, splash, and watch people. Millions of people have visited the canal, and the park is able to host events such as festivals, concerts, and political rallies. The reopened stream also welcomes wildlife, including more than 100 species of other creatures.

Cooler temps

The stream creates, al set temperatures to the crowded downtown area of Seoul that can fall by 10 to 30 degrees compared to temperatures on streets nearby. Breezes are now able to blow through the stream, which also helps clean the site.

Sculpture and Symbols

Water splashes over the smooth carved stones that mark the stream in what is called the Sunken Stone Garden. The stones were donated by the provinces of North Korea and South Korea to symbolize unity. They have been shaped and arranged to allow people to step right down to the water and wet their feet. Upstream, a dramatic waterfall lights up at night.

Meet the Designer

The Cheonggye Canal Park was designed by the landscape architect Mi Kyung Kim and her firm, Mi Kyung Kim Design in Boston, Massachusetts.
MAKE IT:

VEGETABLE GARDENS

Vegetable gardens are popping up in public places all over—not just in backyards anymore. Gardeners are using land that sits empty or squeezing plants into small, leftover open spaces. Landscape architects often help design community food gardens, especially in cities. A lot of schools and churches have started vegetable gardens. This one is at Miller Creek Middle School in San Rafael, California.

COMING TOGETHER

This garden was the idea of a sixth grade student named Gabby. She shared the idea with her parents and her principal, and then was asked to present it to school district leaders. Gabby wanted to raise money to start the garden. Community residents, local businesspeople, and even a Marin County supervisor volunteered to help build it.

ALL ORGANIC

The garden is totally organic, which means it doesn’t involve the use of pesticides or harmful chemicals. Natural fertilizers, like compost, help the crops grow.

SMAK IS BEAUTIFUL

Many community vegetable gardens are quite small. The Miller Creek garden is 4,200 square feet, or less than one-twentieth of an acre. It has a greenhouse for sprouting seeds, a shed, an outdoor kitchen, compost bins, and a rain barrel that can hold 3,500 gallons of water. The garden needs about 4,200 gallons of water a year to support its crops. So, unless there is a drought, most of this water comes from the sky.

FRESH IN SEASON

A lot of the food we eat comes from far away, hundreds of miles by truck, train, or airplane, which means it contributes to pollution that contributes to climate change. Food gardens like Miller Creek supply people with food that is grown close to where it is eaten. This promotes cleaner air, water, and, most important, makes the food taste fresher!

MAJOR BOUNTY

The garden has 25 planter boxes in which people grow a variety of different kinds of vegetables and fruits. It also has an orchard of native fruit trees (including lemon, plum, pear, two kinds of apple, and fig) and a planter for tasty herbs.
MAKE IT: WETLAND

The plant and animal populations of a wetland can change every few feet, depending on how low or high the ground is. The Sankofoa wetland will have pond areas as deep as four feet, deep and shallow marsh areas, mature wet forest areas, and "upland" areas that sit up on slopes and are drier. These variations create a great diversity of plant and animals they attract.

WATER FLOWS

The Sankofoa wetland will help handle large amounts of water that fall during heavy rains, which are frequent in New Orleans. The landscape architect has studied how water moves across the site, according to the height of the land and drainage patterns. When the park is completed, about 80 percent of the site will hold water uppercase to be one feet deep.

DIVERSE PLANT COMMUNITIES

More than three-fourths of the park will be terracing with plants. There are a lot of existing trees that will stay—elm, hickory, willow, mulberry, and rain trees, among others. The park will have bald cypress, water tupelos, and swamp chestnut oak trees. There will be shrubs such as holly, sumac, and many berry fruits. Loads of perennial plants like black-eyed Susans, cardinal flower, and Joe-pye weed and water plants, too: lilies, water hyacinth, and cattails. This abundance of plants will help soak up water, prevent erosion, and manage flooding in the park.

MEET THE DESIGNER

THE SANKOFOA NATURE TRAIL AND WETLAND PARK IS DESIGNED BY THE LANDSCAPE ARCHITECT DIANE JONES AND HER FIRM, DESIGN ONES LLC, IN NEW ORLEANS, LOUISIANA.

NATURE UP CLOSE

The Sankofoa Wetland Park will have a nature trail to let people explore the site. It will also serve as a place to educate people about the benefits of wetlands. Birds, for instance, depend on wetlands as places to stop and find food.

LESSONS FOR THE CITY

Besides welcoming people to enjoy nature up close, a major goal of the Sankofoa wetland is to help manage excess water in times of heavy rains and potential flooding. New Orleans hopes to manage flooding across the city by relying on landscape designers like this that hold water and let it soak into the ground rather than run off and damage streets and homes.
MAKE IT:

The Lynch Family Skatepark was designed to provide a unique and challenging environment for skaters. The park features a variety of obstacles, including rails, ledges, and bowls, designed to cater to skaters of all skill levels. The park is situated in an urban setting, which adds to its popularity among locals and tourists alike.

SKATER SOURCED

McKernan and his team worked closely with the skaters to ensure the park met their needs. They held meetings with skaters to understand their preferences and requirements. The park’s design includes features such as mini-ramps, quarter pipes, and a vert ramp, providing skaters with a wide range of options for practice and enjoyment.

BOSTON

The Lynch Family Skatepark is one of the largest skate parks in the city, offering a unique and challenging environment for skaters. It is located in a bustling urban area, making it a popular destination for skaters and locals alike.

NEET THE DESIGNER

The Lynch Family Skatepark was designed by landscape architect Mike McInerney and his team. The park features a variety of obstacles, including rails, ledges, and bowls, designed to cater to skaters of all skill levels. The park is situated in an urban setting, which adds to its popularity among locals and tourists alike.

ONE BIG PUZZLE

Because of its unusual location under highway ramps, the landscape architect had to figure out how to fill the park’s space with features that would appeal to skaters of all skill levels. He used a combination of ramps, rails, and bowls to create a unique and challenging environment for skaters.

BIG—REAL BIG

The Lynch Family Skatepark is said to be the largest skate park in the city. It features a variety of obstacles, including rails, ledges, and bowls, designed to cater to skaters of all skill levels. The park is situated in an urban setting, making it a popular destination for skaters and locals alike.
Green roofs, or green roofs, are becoming increasingly common on top of buildings, especially in cities. They have many benefits. Standard roofs are hot and hard, and contribute to making cities hotter. This is the ASLA Green Roof, which sits on top of the headquarters of the American Society of Landscape Architects, the publisher of this magazine, in Washington, DC.

BIG OR SMALL

Green roofs can sit on top of any size building. The ASLA Green Roof sits three stories above the street in the Chinatown neighborhood of Washington.

HOLD THE RAINWATER

One important purpose of green roofs is to capture and hold rainwater. Otherwise, rainwater usually drains off roofs, runs into streets and sewers, and, during heavy storms, can overwhelm streams and cause pollution and erosion. When erosion occurs, trees may collapse and die, causing even more erosion. Green roofs can stop this cycle of damage. When it rains an inch, this roof and its plants can hold 25 percent of that water. The rest can be stored in an underground tank, or directed for later use.

COOLER TEMPERATURES

In the height of summer, when roofs are hot, the ASLA Green Roof keeps things cool—as much as 55 degrees cooler than ordinary black roofs nearby. The roof also acts as insulation in winter. Through the year, the roof reduces heating and cooling costs for the building it covers by as much as 15 percent.

SURPRISE MEADOW

Almost the entire roof is covered with plants. There are two kinds of plantings. The roof has tough, low-growing plants called succulents that can grow in shallow soil. These plants are covered by steel grates that form the walking surface for the roof. It also has "intensive" plantings that flow as deeper soils—including native trees. Two large mounds or "waves" were constructed to hold meadow plants and each flower blooms and attracts pollinating birds and bees.

CONSTANT MONITORING

A major benefit of the green roof is that it allows ASLA to monitor the amount of rainfall it captures and holds. These results are taken from rain gauges and sensors that track the flow of water through the roof. Improvements to water quality can also be measured by testing the captured water to find out what substances it keeps from running into the sewers and the watershed, which flows to the Anacostia and Potomac Rivers and eventually to the Chesapeake Bay. So even a small roof helps environmental health.

MEET THE DESIGNER

THE ASLA GREEN ROOF WAS DESIGNED BY THE LANDSCAPE ARCHITECT: MICHAEL VAN VARKENBURGH OF MICHAEL VAN VARKENBURGH ASSOCIATES IN BROOKLYN, NEW YORK.
YOUR TURN:

BECOME A LANDSCAPE ARCHITECT

If you love the outdoors, care about the environment, love working with people, and are creative, you could become a landscape architect.

STUDY HARD

The road to becoming a landscape architect starts here. Prepare by studying science, art, math, history, and business. Landscape architecture relies on a lot of the STEM skills you are already learning. And be sure to develop your communication skills. Good writing and public speaking are essential to landscape architects in their daily work. Read widely: social studies, politics, and economics will help. But don’t forget to enjoy literature, novels, nonfiction, essays, and poems. It all contributes to a well-rounded set of design skills.

VISIT A LANDSCAPE ARCHITECT

Almost every community has landscape architects working in it to improve the quality of life. Try to get to know one and pay him or her a visit. Ask what they are working on. You may be surprised at the variety of jobs they have in progress at any given time. You can also contact your local branch of the American Society of Landscape Architects to ask for more information about careers and design projects in your community.

YOU

PREPARE FOR COLLEGE

To become a landscape architect, you will first enroll in a landscape architecture program at a college or university. There are many landscape architecture programs at colleges in the United States. Most states have a public university that offers a landscape architecture program. Once you graduate, you will need a license, issued by your state. To get a license, you will need to spend a few years working in a landscape architecture firm and then pass a tough examination to be sure you know what you need to protect the health, safety, and welfare of the public. Then you are on your way to a fulfilling career that holds different discoveries every day.

VOLUNTEER

Get to know the world around you by taking part in community events. Join a cleanup day at your local park or help clean trash from a stream. Visit nature centers, and join in on nature walks through your community—there is a lot of nature to discover whenever you go, even in the middle of a city.
GLOSSARY

ALLEE
Two parallel rows of trees planted to form a pathway.

BERM
A walled bank serving as a separation between two elements in a landscape.

CHARRETTE
A group meeting to discuss a landscape design.

COPSE
A small grouping of trees.

EROSION
A loss of soil caused by wind or weather.

GRADE
The degree of slope in a landscape.

HA-HA
A long ditch used as a fence to preserve a view that would be marred by regular fencing.

EMINENCE
The top of a rise or hill.

INVASIVE
A plant or animal that is not native to the place where it lives that takes over and crowds out native species.

MEANDER
A winding curve in a river, path, or road.

NURSERY
A place where young plants and trees are grown and sold.

RIPRAP
Loose stones used to form a foundation to prevent erosion in areas such as riverbanks.

SWALE
A shallow trench meant to direct the flow of rainwater.

TRELLIS
A vertical structure on which plants can be grown.

XERISCAPE
A landscape design using plants that require little water.
<table>
<thead>
<tr>
<th>Landmark</th>
<th>Landmark</th>
<th>Landmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jefferson National Expansion Memorial</td>
<td>Central Park</td>
<td>Walt Disney World</td>
</tr>
<tr>
<td>St. Louis, Missouri</td>
<td>New York, New York</td>
<td>Orlando, Florida</td>
</tr>
<tr>
<td>High Line Park</td>
<td>Copacabana Beach</td>
<td>Beijing Olympic Forest Park</td>
</tr>
<tr>
<td>New York, New York</td>
<td>Rio de Janeiro, Brasil</td>
<td>Beijing, China</td>
</tr>
<tr>
<td>Seaside</td>
<td>Clyde Warren Park</td>
<td>F.D.R. Memorial</td>
</tr>
<tr>
<td>Seaside, Florida</td>
<td>Dallas, Texas</td>
<td>Washington D.C.</td>
</tr>
<tr>
<td>Yosemite National Park</td>
<td>9/11 Memorial</td>
<td>The Palace of Versailles</td>
</tr>
<tr>
<td>California</td>
<td>New York, New York</td>
<td>Versailles, France</td>
</tr>
<tr>
<td>Monticello</td>
<td>1111 Lincoln Road</td>
<td>Millennium Park</td>
</tr>
<tr>
<td>Charlottesville, Virginia</td>
<td>Miami, Florida</td>
<td>Chicago, Illinois</td>
</tr>
</tbody>
</table>